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RATIONALIZING RADIANT-FLUX CALCULATIONS IN SIMPLE 

SYSTEMS OF BODIES 

S. P. Detkov, N. N. Ponomarev, 
and L. V. Petrak 

UDC 536.3 

In heat engineering, neutron physics, atmospheric optics, astrophysics, and other branch- 
es of science, the energy-transfer equations for radiation of various kinds in systems that 
are two-dimensional and close to two-dimensional very often include the functions 

1 ~ / 2  

0 0 

I n  h e a t  e n g i n e e r i n g ,  t h e s e  f u n c t i o n s  a r e  used  in  d e s c r i b i n g  t he  d e g r e e  o f  b l a c k n e s s  o f  
s p a c e s ,  a n g u l a r  c o e f f i c i e n t s ,  r a d i a t i o n  c o e f f i c i e n t s ,  and o t h e r  d i m e n s i o n l e s s  r a d i a n t  f l u x e s .  
I n  t h e  p r e s e n t  work ,  so as  to  r a t i o n a l i z e  t h e  c a l c u l a t i o n s  w i t h o u t  s i g n i f i c a n t  l o s s  o f  a c -  
c u r a c y ,  f r a c t i o n a l l y  r a t i o n a l  a p p r o x i m a t i o n s  a r e  g i v e n  f o r  t h e  E and K f u n c t i o n s .  For  En(x) 
when n = 2, 3, 4, 5,  and 6 the  a p p r o p r i a t e  e x p r e s s i o n  i s  

En (x) = exp (--x) Pra}Qt, Pm= aix i, Q~ ~ bi xl. 
i = 0  i ~ 0  

The maximum absolute error of all the formulas over the whole range [0, ~] of x does not ex- 
ceed 3,!0 -6 (when x = 0). The relative error over the segment x = 0-7 investigated is con- 
siderably less than 0.01%, as a rule. A new approximate formula for El (x) is given. 

The corresponding expression for Kn, when n = i, 2, 3, and 4, is 

Kn (x) = exp (--x) ]/ 1 -~ x Pm'/Qt" 

The maximum absolute error of all these formulas over the whole range [0, =] of x does 
not exceed 1.3-10 -5 (when x = 0). The relative error on the segment x = 0-7 investigated is 
considerably less than 0.005%, as a rule. 

The use of this formula in programs for the calculation of radiant fluxes is a great 
economy, in terms of simplification of the programming and reduction in machine time, with- 
out significant loss of accuracy. 
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DRYING KINETICS OF A CAPILLARY-POROUS BODY IN 

AN ELECTRIC FIELD 

M. S. Panchenko, A. L. Panasyuk, 
I. L. Karpovich, and N. Ya. Kisel'chuk 

UDC 536.423:537.523.3 

The possibility of using a corona discharge to provide the electric field and the energy 
supply in the drying of a model capillary-porous body (KSM-5 silica gel) is considered. Ex- 
perimental thermograms and energy diagrams of the drying process show that the position of 
the kinetic curves of drying depends significantly on the action of the corona discharge. 
The total duration of the process is reduced almost threefold in comparison with convective 
drying at the minimum electrical-energy consumption ensuring maintenance of the corona dis- 
charge. 

The data obtained indicate that the use of a corona discharge as a source of energy 
supply and as a means of intensification reduces the energy consumption and duration of dry- 
ing, while at the same time decreasing the temperature of the dried material. An attempt is 
made to establish the physical mechanism of the phenomenon. 

Dep. 719-77, February 2, 1977. 
Original article submitted September 8, 1976. 

TEMPERATURE DISTRIBUTION IN POROUS MEDIUM DURING 

HEAT TREATMENT 

G. A. Gamidov and I. A. Nasrullaev UDC 622.276.038.5 

To establish the effect of heat treatment on an oll deposit, an investigation is made 
of axisymmetric temperature propagation in an infinite bed of constant width and constant 
thermophysical properties, taking into account heat losses through the roof and floor. The 
temperature distribution is studied at successive stages of heat treatment (warming of the 
borehole region, injection of hot liquid, and cooling of the heated region). The differen- 
tial equations describing the propagation of the temperature field are as follows: 

O~u 1 - - 2 v  Ou Ou 1 Ou 
~ - -  - - = - -  t > O ,  z = O ,  

Or~ ' r ar §  Oz a~ Ot ' 
(1) 

d2u 1 Ou 
t > O ,  O ~ z <  oo. 

Oz ~ -- a~ Ot ' 

Boundary and initial conditions are specified separately for each stage. For the first stage 

u(r  b, t) = ~l (t), u(co, t ) = 0 ,  u(r ,  0 )=~z( r ) .  (2 )  

An o p e r a t i o n a l  m e t h o d  i s  u s e d  t o  s o l v e  E q s .  (1 )  a n d  (2 )  s e t t i n g  v = 0 .  F o r  t h e  i n j e c -  
t i o n  (second stage), the initial condition is the solution of Eqs. (I) and (2) at the initial 
moment of injection t = tx. The condition as r -> ~ is as in Eq. (2) and the condition at the 
borehole is related to the flow rate of the hot liquid (~ # 0). 

In the cooling of the hot zone (third stage) the solution of the second stage is taken 
as the initial condition. At the borehole, values of the temperature at various times are 
specified. The solution obtained for this stage is simplified and presented in a form con- 
venient for practical calculations, using the following approximation for the initial distri- 
bution, 

m 

F (r) = E Bi exp (bir ~) , (3 )  
t = I  

The solution for the cooling process then takes the and the mechanical quadrature formula. 
form 
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u (r, O, t ) :  ~ = i~=l l-~- (xh) exp I-]- zi (xk)] " 

z i  ( x )  - -  

8bia2t 
- . 

1§ FV+_ 
X 

(4) 

The values of A k and the points x k are given in tables of the numerical Laplace transform~ 
The formulas obtained are used for calculations and practical conclusions are made. 

NOTATION 

u, normalized temperature; at, a~, thermal diffusivities of the bed and the surrounding 
medium; v, Peclet number; ~ = 2%:/%oh; %o~ %~, thermal conduetivities of bed and surrounding 
medium; h, bed depth; rb, borehole radius; t~ time; Bi, bi, parameters determined using ex- 
perimental and calculated data. 

Dep. 786-77, January 7, 1977. 
Original article submitted September 7, 1976. 

DETERMINATION OF SURFACE FRICTION IN A BOUNDARY LAYER 

USING EXTENSIBLE-STRIP DETECTORS 

A. G. Prozorov UDC 533.6.071.08:532.526 

The paper considers the determination of the friction T w at the surface of a body in a 
flow of gas or liquid from the pressure difference hp at the wall on both sides of a strip 

y~ 

f , a _ ~ 3 ~ --fg 
v , --Is 

I j. , ~ 

- ]  " 

Fig. i. Extensible-strip detector (u, m/sec). 
The auxiliary relation y*(x*) for determining sur- 
face friction using an extensible-strip detector; 
i) h = 0.i mm; 2) 0.2; 3) 0.3; 4) 0.4 (1-4 -- lam- 
inar boundary layer at the plate); 5) h = 0.I mm; 
6) 0.2; 7) 0.3; 8) 0.4 (5-8 -- turbulent boundary 
layer at plate, results of present experiment); 9) 
h = 0.01 mm; i0) 0.02; ii) 0.03; 12) 0.04 (9-12 -- 
turbulent boundary layer at plate [i]); 13) h = 
0.05 mm; 14) 0.13 (13-14 -- turbulent flow in tube 
[2]); 15) h = 9.I mm, laminar flow at plate; 16) 
h = 0.i mm, turbulent flow at plate [3]. 
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that can be extended along a normal to the wall (Fig. i). The aim of the paper is to obtain 
from experimental results for much-studied flows a universal relation y*(x*), where x* = log- 
[(Ap/p)(h2/v2)], y*= log [xw/P)(h2/v2)]. For known values of the strip height h, the density 
p, and the kinematic viscosity v of the medium, this relation can be used to determine the 
surface friction in any flow from the measured value of the pressure difference, proceeding 
analogously to the Stanton and Preston methods. 

The data required to determine the relation y*(x*) are obtained by appropriate treat- 
ment of the dimensional dependences Tw(Ap) for various extensible-strip detectors [1-3] and 
by setting up a special experiment on a plate. The relations y*(x*) shown in Fig. i are ap- 
proximated by a single curve over most of the range of x* investigated. This curve is com- 
pared with the similar curves used in the Stanton and Preston methods. It is also shown that 
the extensible-strip detector is suitable for the determination of the surface-friction vec- 
tor in three-dimensional flow. 

The relation obtained may beused to interpret experimental results obtained with the 
extensible-strip detector. 

LITERATURE CITED 
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2. I. Rechenberg, Z. Flugwissenschaften, No. ii (1963). 
3. D. Wiesner, Schiffbauforschung, ~, Nos. 5-6 (1970). 

Dep. 720-77, January 31, 1977. 
Original article submitted November 22, 1976. 

BOUNDARY-LAYER DEVELOPMENT AT A CIRCULAR CYLINDER 

MOVING CONTINUOUSLY IN A LONGITUDINAL FLOW OF 

INCOMPRESSIBLE FLUID 

G. A. Danilin UDC 532.526:677.4 

The paper considers the determination of the principal characteristics of a boundary 
layer at a circular cylinder of radius R moving continuously at a constant velocity u w in a 
homogeneous flow of incompressible fluid moving at velocity u e along the direction of motion 
of the cylinder. It is assumed that the flow is initially unperturbed but that at a certain 
moment, as a result of viscous drag, it begins to interact with the moving surface of the 
cylinder, and enters the flow mode characteristic for a boundary layer. 

The motion of the liquid in the boundary layer is described by the equations 

_ ~ Ou Ou ~ 0 ( O _~ _y )  Oru Orv = O, u + v --  r (1) 
+ ay ~ ay r @ 

and boundary conditions 

A solution of Eq. 
by a numerical method 
as follows: 

y = r - - R , v = p / p ;  U=Uw, V = O ~ = O , x > ~ ;  
u ~ % ( y ~ , x > O ) ;  u = u e ( y > O , x = ~ ,  

where x and r are cylindrical coordinates related with the axis and direction of motion of 
the cylinder; u and v are the velocity components of the liquid along the x and r axes; and 
O, ~, and ~ are the density, dynamic, and kinematic viscosities of the liquid. 

(i) is obtained by the Pohlhausen single-parameter method and another 
[i]. The single-parameter family of Velocity profiles is determined 

u ~- ue .-{- (Uw - -  Ue) r r -- l - -  e.-X ln (l + n) (O ~ n < ne), 

c p = O ( n ~ n e ) ,  n = y / R ,  n e = 6 ] R  = e x p ( ~ ) - -  l ,  

( Ou ) l  ~ ( u ~ - - u ~ )  

" c ~  -~y v=O-- Rcr 
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Here ~ is the form parameter determined from the K~rm~n integral equation; T is the tangen- 
tial frictional stress at the cylinder surface; and ~ is the boundary-layer thickness. 

To find the numerical solution of Eqo (I), the following variables and functions are 
used : 

= - ~ x  , ~ = -~-  , u l  - u ~  (u~  ~> u~), u1 = u~ ( . ~  < u~), 

l ]  

o 

of o[ 0 

The d i s t r i b u t i o n s  of the functions f ,  f ' ,  and f" in the boundary layer  as a function of 
and the parameters A w = Uw/Ul , A e = Ue/Ul are obtained. The values of A w and A e are var ied 

over a wide range. The v a r i a b l e  E takes values from 0 to 70. The d i s t r i b u t i o n  f"(~,  0) 
over the surface of the cyl inder  i s  approximated as follows 

}" (~, o) = (A e --Aw) [0.332 (Ae § 1-786Aw) ~ § 0.438 (Ae -~ 0.117Aw) 0"09~0"S21, 

the e r ror  of which does not exceed 5% for any ~, Aw, and A e. 

The d i f fe rence  between the solu t ions  of the boundary-layer equation by the single-param- 
e te r  and numerical methods i s  i n s i g n i f i c a n t .  

LITERATURE CITED 

i. I.V. Petukhov, in: Numerical Methods of Solving Differential Equations and Quadrature 
Formulas [in Russian], Nauka, Moscow (1964), p. 304. 

Dep. 783-77, February 7, 1977. 
Original article submitted November i, 1976. 

CALCULATION OF TEMPERATURE FIELDS IN KERAMZIT* CONCRETE 

DURING THERMAL TREATMENT 

N. I. Gamayunov, R. A. Ispiryan, 
and A. V. Klinger 

UDC 6 6 6 . 9 7 3  

The two-stage heating of an infinite plate of keramzit concrete is considered. The tem- 
perature of the medium varies linearly with time in the first stage and remains constant in 
the second stage. The heat-transfer conditions at the surface differ and are characterized 
by the Biot numbers Bix and Bi2. Because of the high rate of heating and the negligible 
moisture loss characteristic of light concretes, the effects of the internal heat source and 
heat loss on evaporation are disregarded. Solving the Fourier equation with boundary condi- 
tions of the third kind and zero initial condition gives the following expression for the 
calculation of the temperature field in the first stage: 

(%, FO)]Fo~Fo, = P d  Fo + -~- + Bil + Bi2 + 2Bi~Bi2 Z- -  9 (Bi~ + Bi 2 + 2BilBi2) + AnBn exp (--~Fo) . (1)  
n =  l 

Here @(X, Fo) is the dimensionless excess temperature; X is a dimensionless coordinate (the 
coordinate origin is at the center of the plate); Fo is the Fourier number (Fox is the value 
corresponding to the end of the first stage); Pd is the Predvoditelev number, characterizing 
the rate of temperature increase of the medium; ~n is the root of the characteristic equa- 
tion 

Bi~Bi~ 
(Bi I ~ Bi2) ctg 2~ = ~ -- 

*Keramzit: a porous clay filler. 
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A n is the initial thermal amplitude, 

and B n is a factor, 

B~=Bitcos(l--X) p n+Bi2cos( l+X)~ n +  BiIBi------~ [sin(l--X)~n+sin(l+X)~n].  
~n 

The i n i t i a l  t e m p e r a t u r e  d i s t r i b u t i o n  f o r  t h e  s econd  s t a g e  i s  g i v e n  by Eq. (1) on s e t -  
t i n g  Fo = Fox. Replacing Fo by Eo* = Fo -- Fox allows the temperature field in the second 
stage to be found: 

(Z, Fo)IFo-Fo, = Pd {Fo 1 -- ' ~  A n B n  [1-- exp (--~Fo0] exp [--~(Fo -- Fo0] }. (2) 

Using Eqs. (I) and (2), the temperature field is calculated for various values of Bix 
and Bil. The theoretical results are compared with experimental data. 

Dep. 721-77, January 24, 1977. 
Original article submitted October 25, 1976. 

NEW METHOD OF CALCULATING COLD LINKAGE IN 

HEAT-INSULATING LAYERS 

M. A. Gintsburg and Yu. N. Khromets UDC 699.86 

The simplest model of a cold linkage is a bolt tying two metallic plates (of thickness- 
es Lx and L2 and thermal conductivities %z and ~2) separated by a heated layer (of thickness 
2). The bolt axis is taken along the axis r = 0 of a cylindrical coordinate system. The 
temperature of the external air To (--50 ~ < To < --10~ and the temperature of the air en- 
closed within the plates T = T2 (T2 = 18~ are given. The temperature of the hot end of 
the bolt Tx is found. 

The heat flux in an element of plate surface as a result of heat exchange with the hot 
air between the plates is equivalent to a source of heat uniformly distributed over the plate 
cross section with density ux(Tu -- T)/%~Lx (ux is the heat-transfer coefficient between the 
plate and the air enclosed within the plates), and sothe heat-conduction equation is 

d2T 1 d T  
- -  -~- - -  �9 - -  + k~ ( T ~  - -  T )  : 0 ,  ( 1 )  

dr ~ r dr 

with solution 

T = T.. - -  C1Ko (k, ') ,  (2) 

where k 2 = uz/~zLz; Ko is a Bessel function. 

The boundary condition at r = ro (ro is the bolt radius) gives the value of cx: c~ = 
(Ta -- Tx)/Ko(kro). 

The heat resistance of the plate is 

R i  = (2:t%iLiF ( x l ) ) - l ;  F ( x )  = x K l  ( x )  . x i  : kiro; k i  ~ = ~,iLi (3) 
Ko ( x )  ' 

( t h e  s u b s c r i p t  i = 1 c o r r e s p o n d s  t o  t h e  i n n e r  p l a t e  and i -- 2,  t o  t h e  o u t e r  p l a t e ) .  The r e -  
s i s t a n c e  of the bolt is Ro = I/~rol~o. 

The inhomogeneity can be characterized by the coefficient of cooling of the walls by 
the bolt: 

T~- T I Rx (4) 
T~ -- T O R1 q- R2 A_ Ro 
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Usually, in building structures, x <:I. Replacing Ko and K, expansions for x .i i gives 
] 

Ri -- . 2 ~ i L ~  (0.116-- lnxi). (5) 

Heating Sheet. Setting a thick sheet (under the bolt) on the inner plate from the warm 
side has the effect of shunting the resistance of the heat-conducting circuit formed by the 
plate and therefore 8 is decreased. 

Let there be a component (plate, channel bar, etc.)of total heat resistance R on a 
path of heat flux Q between the sheet (radius R, thickness L R) and the air between the plates. 
Then Rin, the input resistance of this system on adding the sheet, is: Rin = (T~ -- Tz)/ 
Qr=ro. The boundary conditions at r = ro and r = R give 

Rin = Ro (Io (kro) + SKo (kro))/(Ii (kro) - -  SKI (kro)); 

S -- (11 (kR) P + Io (kR))/(Kx (kR) P --  Ko (kR)); (6) 

(P = 2nkR~hLRR); Ro = (2~shLRkro)-a. 

Dep. 781-77, January 10, 1977. 
Original article submitted February 2, 1976. 
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